Abstract

RNA-RNA association and phase separation appear to be essential for the assembly of stress granules and underlie RNA foci formation in repeat expansion disorders. RNA molecules are found to play a significant role in gene-regulatory functions via condensate formation among themselves or with RNA-binding proteins. The interplay between driven versus spontaneous processes is likely to be an important factor for controlling the formation of RNA-mediated biomolecular condensate. However, the sequence-specific interactions and molecular mechanisms that drive the spontaneous RNA-RNA association and help to form RNA-mediated phase-separated condensate remain unclear. With microseconds-long atomistic molecular simulations here, we report how essential aspects of RNA chains, namely, base composition, metal ion binding, and hydration properties, contribute to the association of the series of simplest biologically relevant homopolymeric and heteropolymeric short RNA chains. We show that spontaneous processes make the key contributions governed by the sequence-intrinsic properties of RNA chains, where the definite roles of base-specific hydrogen bonding and stacking interactions are prominent in the association of the RNA chains. Purine versus pyrimidine contents of RNA chains can directly influence the association properties of RNA chains by modulating hydrogen bonding and base stacking interactions. This study determines the impact of ionic environment in sequence-specific spontaneous association of short RNA chains, hydration features, and base-specific interactions of Na+, K+, and Mg2+ ions with RNA chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.