Abstract

The reaction of chloride salts of zinc and manganese with NaOH yielded a cubic spinel structured metastable precursor at room temperature, driven mainly by the salt elimination process's energetics. While classical drying processes failed to produce the monophasic oxide, recrystallization under the hydrothermal conditions yielded Zn2MnO4 in nano dimensions. The sample consisted of crystallites with an average 6 nm size and had a lattice dimension of 8.396 (13) Å. The selected area electron diffraction pattern reiterated the occurrence of cubic inverse spinel. The presence of fingerprint (A1g and F2g) modes of an inverse spinel at 663 and 561 cm−1 in the Raman spectrum further supported our finding. The TEM-EDS analysis confirmed the ratio of Zn: Mn as 1.95:1. The sample showed an optical bandgap of 2.54 eV. X-ray photoelectron spectral analysis established the existence of manganese in the IV oxidation state. The presence of Mn (IV) with small amounts of Mn (III) (up to 20%) was confirmed from the electron paramagnetic spectra recorded at room temperature and 77 K. An average oxidation state of 3.85 was deduced from the chemical redox titration experiments. The pseudocapacitive behavior of the sample was evident in cyclic voltammetric experiments. The sample exhibited paramagnetic behavior at 298 K within the applied magnetic field of ±50 kOe. In the temperature-dependent measurements, the zero-field and field cooled data points of Zn2MnO4 diverged at 13 K, suggesting a spin-glass behavior. An effective magnetic moment of 4.31 BM was deduced for the sample. The inverse spinel effectively catalyzed the oxidation of phenol. It facilitated nearly 100% degradation of bisphenol-A to salicylaldehyde and phenylethyl alcohol (as major products) in the presence of H2O2 and at a pH of 9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.