Abstract
We apply duality transformation to the Abelian Higgs model in 3+1 dimensions in the presence of electrons coupled to the gauge field. The Higgs field is in the symmetry broken phase, where flux strings can form. Dualization brings in an antisymmetric tensor potential Bμν, which couples to the electrons through a nonlocal interaction which can be interpreted as a coupling to the spin current. It also couples to the string worldsheet and gives rise to a string Higgs mechanism via the condensation of flux strings. In the phase where the Bμν field is massless, the nonlocal interaction implies a linearly rising attractive force between the electrons, which can be interpreted as the result of a pair of strings joining the electrons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.