Abstract

Purpose The paper aims to present an innovative method for identification of flight modes in the spin maneuver, which is highly nonlinear and coupled dynamic. Design/methodology/approach To fix the mode mixing problem which is mostly happen in the EMD algorithm, the authors focused on the proposal of an optimized ensemble empirical mode decomposition (OEEMD) algorithm for processing of the flight complex signals that originate from FDR. There are two improvements with the OEEMD respect to the EEMD. First, this algorithm is able to make a precise reconstruction of the original signal. The second improvement is that the OEEMD performs the task of signal decomposition with fewer iterations and so with less complexity order rather than the competitor approaches. Findings By applying the OEEMD algorithm to the spin flight parameter signals, flight modes extracted, then with using systematic technique, flight modes characteristics are obtained. The results indicate that there are some non-standard modes in the nonlinear region due to couplings between the longitudinal and lateral motions. Practical implications Application of the proposed method to the spin flight test data may result accurate identification of nonlinear dynamics with high coupling in this regime. Originality/value First, to fix the mode mixing problem in EMD, an optimized ensemble empirical mode decomposition algorithm is introduced, which disturbed the original signal with a sort of white Gaussian noise, and by using white noise statistical characteristics the OEEMD fix the mode mixing problem with high precision and fewer calculations. Second, by applying the OEEMD to the flight output signals and with using the systematic method, flight mode characteristics which is very important in the simulation and controller designing are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call