Abstract
A typical magnetic-resonance scheme employs a static bias magnetic field and an orthogonal driving magnetic field oscillating at the Larmor frequency, at which the atomic polarization precesses around the static magnetic field. Here we demonstrate both theoretically and experimentally the variations of the resonance condition and the spin precession dynamics resulting from the parametric modulation of the bias field. We show that the driving magnetic field with the frequency detuned by different harmonics of the parametric modulation frequency can lead to resonance as well. Also, a series of frequency sidebands centered at the driving frequency and spaced by the parametric modulation frequency can be observed in the precession of the atomic polarization. We further show that the resonant amplitudes of the sidebands can be controlled by varying the ratio between the amplitude and the frequency of the parametric modulation. These effects could be used in different atomic magnetometry applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have