Abstract
The carrier spin dynamics in a $n$-doped (In,Ga)As/GaAs quantum well has been studied by time-resolved Faraday rotation and ellipticity techniques in the temperature range down to 430 milliKelvin. These techniques give data with very different spectral dependencies, from which nonetheless consistent information on the spin dynamics can be obtained, in agreement with theoretical predictions. The mechanisms of long-lived spin coherence generation are discussed for the cases of trion and exciton resonant excitation. We demonstrate that carrier localization leads to a saturation of spin relaxation times at 45 ns for electrons below 4.5 K and at 2 ns for holes below 2.3 K. The underlying spin relaxation mechanisms are discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have