Abstract

We carried out inelastic neutron scattering experiments on a buckled honeycomb lattice antiferromagnet ${\mathrm{Ba}}_{2}{\mathrm{NiTeO}}_{6}$ exhibiting a stripe structure at a low temperature. Magnetic excitations are observed in the energy range of $\ensuremath{\hbar}\ensuremath{\omega}\ensuremath{\lesssim}10$ meV having an anisotropy gap of 2 meV at 2 K. We perform spin-wave calculations to identify the spin model. The obtained microscopic parameters are consistent with the location of the stripe structure in the classical phase diagram. Furthermore, the Weiss temperature independently estimated from a bulk magnetic susceptibility is consistent with the microscopic parameters. The results reveal that a competition between the nearest-neighbor and next-nearest-neighbor interactions that together with a relatively large single-ion magnetic anisotropy stabilize the stripe magnetic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.