Abstract

This work is a micromagnetic simulation-based study on the GHz-frequency ferromagnetic resonances (FMR) for the detection of magnetic nanoparticles (MNPs) using spin current nano-oscillator (SCNO) operating in precession mode. Capture antibody-antigen-detection antibody-MNP complex on the SCNO surface generates magnetic fields that modify the FMR peaks and generate measurable resonance peak shifts. Moreover, our results strongly indicate the position-sensitive behavior of the SCNO biosensor and demonstrate ways to eradicate this effect to facilitate improved bio-sensing. Additionally, a study has been made on how MNPs with different sizes can alter the SCNO device performance. This simulation-based study on the SCNO device shows the feasibility of a frequency-based nano-biosensor with the sensitivity of detecting a single MNP, even in presence of background noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.