Abstract

Luminescent radicals have been intensively studied as a new class of materials exhibiting novel photofunctions unique to open-shell systems. When luminescent radicals are assembled, intriguing spin-correlated luminescence phenomena emerge, including excimer-like emission and magnetic-field effects on luminescence (i.e., magnetoluminescence, MagLum). However, the underlying mechanisms of these phenomena arising from spin multiplicity and spin-dependent excited-state dynamics are poorly understood due to the limited number of luminescent polyradical systems available for study. In particular, the correlation between stronger intramolecular exchange interactions (|2J/kB| > ∼10 K, where J and kB are the intramolecular exchange coupling constant and the Boltzmann constant, respectively) and luminescence properties has not been fully explained. In this study, a novel carbazole-containing diradical emitter (1) and the corresponding monoradical (2) were prepared for the in-depth study of spin-correlated luminescence properties, with luminescence measurements under magnetic fields of up to 18 T. Diradical 1 has a negative 2J/kB value of several tens of kelvin and exhibits a single-molecule MagLum and thermally activated luminescence, whereas 2 does not. Detailed quantitative analyses revealed that both the spin-correlated luminescence properties of 1 are strongly dominated by ground-state spin statistics based on the Boltzmann distribution (i.e., 2J/kB values). Furthermore, diradical 1 exhibits external heavy-atom effects in heavy-atom-containing solvents such as iodobenzene, whereas monoradical 2 does not. This is the first experimental verification of external heavy-atom effects in polyradical emitters. This work demonstrates that polyradical emitters can be designed based on spin degrees of freedom in both ground and excited states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.