Abstract

Alumina-supported iron oxides have been prepared by incipient wetness impregnation method and employed for orthohydrogen to parahydrogen spin conversion at cryogenic temperature. These materials were characterized using a series of characterization techniques such as SEM, XRD, Raman and in situ FTIR spectroscopy. The spin conversion was investigated at low temperature by a batch mode of operation. The in situ FTIR spectra were collected in a transmission mode to obtain the spin conversion. While the iron oxide was highly dispersed over alumina support at low loading percent, a rodlike crystallite of iron oxide was formed at high loading percent. The 10 and 20wt% iron oxides on alumina were proved to be the most active catalysts. The spin conversion process was very slow and time-dependent. It was concluded that the spin conversion was a function of various factors including the iron oxide loading percent, calcination temperature, and different supports.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call