Abstract

We fabricate silver (Ag) nanoparticles (NPs) on the rear surface of thin film hydrogenated amorphous silicon (a-Si:H) solar cells to enhance the light absorption using spin-coating Ag ink, which can produce Ag NPs by a simple, fast, and inexpensive method. Ink concentration and sintering temperature of the spin-coating Ag ink are optimized to maximize the light absorption in the solar cell by tuning the size and distribution as well as the surface coverage of the Ag NPs. The thickness of a SiNx spacer layer, which was embedded between the solar cell and the Ag NPs for electrical isolation, dependent optical properties of the solar cell is also systematically investigated. The thin film a-Si:H solar cell with a thin SiNx spacer layer and the Ag NPs showed great potential for realizing cost-effective high-efficiency solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call