Abstract

Polarized quarks and antiquarks in high-energy heavy-ion collisions can lead to the spin alignment of vector mesons formed by quark coalescence. Using the relativistic spin Boltzmann equation for vector mesons derived from Kadanoff-Baym equations with an effective quark-meson model for strong interaction and quark coalescence model for hadronizaton, we calculate the spin density matrix element ρ_{00} for ϕ mesons and show that anisotropies of local field correlations with respect to the spin quantization direction lead to ϕ meson's spin alignment. We propose that the local correlation or fluctuation of ϕ fields is the dominant mechanism for the observed ϕ meson's spin alignment and its strength can be extracted from experimental data as functions of collision energies. The calculated transverse momentum dependence of ρ_{00} agrees with STAR's data. We further predict the azimuthal angle dependence of ρ_{00} which can be tested in future experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.