Abstract

As one kind of approximation of the full configuration interaction solution, the selected configuration interaction (sCI) methods have been shown to be valuable for large active spaces. However, the inclusion of dynamic correlation beyond large active spaces is necessary for more quantitative results. Since the sCI wave function can provide a compact reference for multireference methods, previously, we proposed an externally contracted multireference configuration interaction method using the sCI reference reconstructed from the density matrix renormalization group wave function [J. Chem. Theory Comput. 2018, 14, 4747-4755]. The DMRG2sCI-EC-MRCI method is promising for dealing with more than 30 active orbitals and large basis sets. However, it suffers from two drawbacks: spin contamination and low efficiency when using Slater determinant bases. To solve these problems, in this work, we adopt configuration state function bases and introduce a new algorithm based on the hybrid of tree structure for convenient configuration space management and the graphical unitary group approach for efficient matrix element calculation. The test calculation of naphthalene shows that the spin-adapted version could achieve a speed-up of 6.0 compared with the previous version based on the Slater determinant. Examples of dinuclear copper(II) compound as well as Ln(III) and An(III) complexes show that the sCI-EC-MRCI can give quantitatively accurate results by including dynamic correlation over sCI for systems with large active spaces and basis sets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call