Abstract

High-precision atomic structure calculations require accurate modeling of electronic correlations typically addressed via the configuration interaction (CI) problem on a multiconfiguration wave function expansion. The latter can easily become challenging or infeasibly large even for advanced supercomputers. Here, we develop a deep-learning approach which allows us to preselect the most relevant configurations out of large CI basis sets until the targeted energy precision is achieved. The large CI computation is thereby replaced by a series of smaller ones performed on an iteratively expanding basis subset managed by a neural network. While dense architectures as used in quantum chemistry fail, we show that a convolutional neural network naturally accounts for the physical structure of the basis set and allows for robust and accurate CI calculations. The method was benchmarked on basis sets of moderate size allowing for the direct CI calculation, and further demonstrated on prohibitively large sets where the direct computation is not possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.