Abstract
The spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions is exactly solved by establishing a precise mapping relationship with the corresponding zero-field (symmetric) eight-vertex model. It is shown that the Ising-Heisenberg model with the ferromagnetic Heisenberg interaction exhibits a striking critical behavior, which manifests itself through re-entrant phase transitions as well as continuously varying critical exponents. The changes in critical exponents are in accordance with the weak universality hypothesis in spite of a peculiar singular behavior that emerges at a quantum critical point of the infinite order, which occurs at the isotropic limit of the Heisenberg interaction. On the other hand, the Ising-Heisenberg model with the antiferromagnetic Heisenberg interaction surprisingly exhibits less significant changes in both critical temperatures and critical exponents upon varying the strength of the exchange anisotropy in the Heisenberg interaction.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have