Abstract
While existing synthetic technologies for ex vivo T-cell activation face challenges like suboptimal expansion rates and low effectiveness, artificial antigen-presenting cells (aAPCs) hold great promise for enhanced T-cell based therapies. In particular, gold nanoparticles (AuNPs), known for their biocompatibility, ease of synthesis, and versatile surface chemistry, are strong candidates for use as nanoscale aAPCs. In this study, we developed spiky AuNPs with branched geometries to present activating ligands to primary human T-cells. The special structure of spiky AuNPs enhances biomolecule loading capacity and significantly improves T-cell activation through multivalent binding of costimulatory ligands and receptors. Our spiky AuNPs outperform existing systems including Dynabeads and soluble activators by promoting greater polyclonal expansion of T-cells, boosting sustained cytokine production, and generating highly functional T-cells with reduced exhaustion. In addition, spiky AuNPs effectively activate and expand CD19 CAR-T cells while demonstrating increased in vitro cytotoxicity against target cells using fewer effector cells than Dynabeads. This study underscores the potential of spiky AuNPs as a powerful tool, bringing new opportunities to adoptive cell therapy applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have