Abstract

Spiking neural P (SNP) systems are a class of parallel, distributed, and nondeterministic computing models inspired by the spiking of biological neurons. In this work, the biological feature known as structural plasticity is introduced in the framework of SNP systems. Structural plasticity refers to synapse creation and deletion, thus changing the synapse graph. The programming therefore of a brain-like model, the SNP system with structural plasticity (SNPSP system), is based on how neurons connect to each other. SNPSP systems are also a partial answer to an open question on SNP systems with dynamism only for synapses. For both the accepting and generative modes, we prove that SNPSP systems are universal. Modifying SNPSP systems semantics, we introduce the spike saving mode and prove that universality is maintained. In saving mode, however, a deadlock state can arise, and we prove that reaching such a state is undecidable. Lastly, we provide one technique in order to use structural plasticity to solve a hard problem: a constant time, nondeterministic, and semi-uniform solution to the NP-complete problem Subset Sum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.