Abstract
Spiking neural P (SNP) systems are a class of neural-like membrane computing models that are abstracted by applying the mechanisms of spiking neurons. In SNP systems, each spiking neuron has three characteristics: (i) internal state, (ii) spike consumption, and (iii) spike generation. These three characteristics are used to form a parameterised nonlinear SNP system, which has a nonlinear spiking mechanism, three nonlinear gate functions, and trainable parameters. Based on the parameterised nonlinear SNP system, we develop a novel variant of long short-term memory (LSTM), called the LSTM-SNP model. LSTM-SNP is a recurrent-type model that can process sequential data. Time series forecasting problems are used to conduct a case study. Five benchmark time series are used to evaluate the proposed LSTM-SNP model and compare seven state-of-the-art prediction models and five baseline prediction models. The comparison results show the effectiveness of the proposed LSTM-SNP model for time series forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.