Abstract
The behavior of the leading singular values and vectors of noisy low-rank matrices is fundamental to many statistical and scientific problems. Theoretical understanding currently derives from asymptotic analysis under one of two regimes: classical, with a fixed number of rows, large number of columns or vice versa; and proportional, with large numbers of rows and columns, proportional to one another. This paper is concerned with the disproportional regime, where the matrix is either “tall and narrow” or “short and wide”: we study sequences of matrices of size n×mn with aspect ratio n/mn→0 or n/mn→∞ as n→∞. This regime has important “big data” applications.Theory derived here shows that the displacement of the empirical singular values and vectors from their noise-free counterparts and the associated phase transitions—well-known under proportional growth asymptotics—still occur in the disproportionate setting. They must be quantified, however, on a novel scale of measurement that adjusts with the changing aspect ratio as the matrix size increases. In this setting, the top singular vectors corresponding to the longer of the two matrix dimensions are asymptotically uncorrelated with the noise-free signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.