Abstract

The stability of phase-locked states of electrically coupled type-1 phase response curve neurons is studied using piecewise linear formulations for their voltage profile and phase response curves. We find that at low frequency and/or small spike width, synchrony is stable, and antisynchrony unstable. At high frequency and/or large spike width, these phase-locked states switch their stability. Increasing the ratio of spike width to spike height causes the antisynchronous state to transition into a stable synchronous state. We compute the interaction function and the boundaries of stability of both these phase-locked states, and present analytical expressions for them. We also study the effect of phase response curve skewness on the boundaries of synchrony and antisynchrony.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call