Abstract

Rapid processing of tactile information is essential to human haptic exploration and dexterous object manipulation. Conventional electronic skins generate frames of tactile signals upon interaction with objects. Unfortunately, they are generally ill-suited for efficient coding of temporal information and rapid feature extraction. In this work, we report a neuromorphic tactile system that uses spike timing, especially the first-spike timing, to code dynamic tactile information about touch and grasp. This strategy enables the system to seamlessly code highly dynamic information with millisecond temporal resolution on par with the biological nervous system, yielding dynamic extraction of tactile features. Upon interaction with objects, the system rapidly classifies them in the initial phase of touch and grasp, thus paving the way to fast tactile feedback desired for neuro-robotics and neuro-prosthetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.