Abstract

Dexterous object manipulation using anthropomorphic robot hands is of great interest for natural object manipulations across the areas of healthcare, smart homes, and smart factories. Deep reinforcement learning (DRL) is a particularly promising approach to solving dexterous manipulation tasks with five-fingered robot hands. Yet, controlling an anthropomorphic robot hand via DRL in order to obtain natural, human-like object manipulation with high dexterity remains a challenging task in the current robotic field. Previous studies have utilized some predefined human hand poses to control the robot hand’s movements for successful object-grasping. However, the hand poses derived from these grasping taxonomies are limited to a partial range of adaptability that could be performed by the robot hand. In this work, we propose a combinatory approach of a deep transformer network which produces a wider range of natural hand poses to configure the robot hand’s movements, and an adaptive DRL to control the movements of an anthropomorphic robot hand according to these natural hand poses. The transformer network learns and infers the natural robot hand poses according to the object affordance. Then, DRL trains a policy using the transformer output to grasp and relocate the object to the designated target location. Our proposed transformer-based DRL (T-DRL) has been tested using various objects, such as an apple, a banana, a light bulb, a camera, a hammer, and a bottle. Additionally, its performance is compared with a baseline DRL model via natural policy gradient (NPG). The results demonstrate that our T-DRL achieved an average manipulation success rate of 90.1% for object manipulation and outperformed NPG by 24.8%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.