Abstract

According to Belinski\ifmmode \check{i}\else \v{i}\fi{}, Khalatnikov and Lifshitz (BKL), a generic spacelike singularity is characterized by asymptotic locality: Asymptotically, toward the singularity, each spatial point evolves independently from its neighbors, in an oscillatory manner that is represented by a sequence of Bianchi type I and II vacuum models. Recent investigations support this conjecture but with a modification: Apart from local BKL behavior there also exists formation of spatial structures (``spikes'') at, and in the neighborhood of, certain spatial surfaces that break asymptotic locality; the complete description of a generic spacelike singularity involves spike oscillations, which are described by sequences of Bianchi type I and certain inhomogeneous vacuum models. In this paper we describe how BKL and spike oscillations arise from concatenations of exact solutions in a Hubble-normalized state space setting, suggesting the existence of hidden symmetries and showing that the results of BKL are part of a greater picture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call