Abstract

This is a review of recent progress concerning generic spacelike singularities in general relativity. For brevity the main focus is on singularities in vacuum spacetimes, although the connection with, and the role of, matter for generic singularity formation is also commented on. The paper describes recent developments in two areas and show how these are connected within the context of the conformally Hubble-normalized state space approach. The first area is oscillatory singularities in spatially homogeneous cosmology and the connection between asymptotic behaviour and heteroclinic chains. The second area concerns oscillatory singularities in inhomogeneous models, especially spike chains and recurring spikes. The review also outlines some underlying reasons for why the structures that are the foundation for generic oscillatory behaviour exists at all, which entails discussing how underlying physical principles and applications of solution generating techniques yield hierarchical structures and connections between them. Finally, it is pointed out that recent progress concerning generic singularities motivates some speculations that suggest that a paradigm shift concerning their physical role, and what mathematical issues to address, might be in order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.