Abstract

Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.

Highlights

  • Oceanic islands due to their volcanic origin are ideal systems for evolutionary studies [1]

  • This study aims to uncover the phylogenetic origins of T. canariensis, one of the few examples of trap-door spiders endemic to an oceanic archipelago, and to infer the temporal framework for the colonisation of the islands using a multilocus approach

  • The complete cox1 data matrix, including 98 Titanidiops specimens from the Canaries and Morocco, was analysed using the single-threshold option of the General Mixed Yule Coalescence model (GMYC) algorithm, which was shown not to be significantly worse than the multiple-threshold option (p50.23)

Read more

Summary

Introduction

Oceanic islands due to their volcanic origin are ideal systems for evolutionary studies [1]. Episodes of volcanic activity have left their fingerprints on the genetic diversity and distribution of endemic terrestrial organisms. The region harbours a significant number of endemic organisms; 50% of the known invertebrates and 27% of the vascular plants inhabiting the archipelago are Canarian endemics. This extraordinary biological richness has been traditionally interpreted in many organisms as a relict of the Tertiary Mediterranean diversity, but the advent of molecular phylogenetics revealed a large amount of in situ diversification [10]. Some groups have colonised the archipelago repeatedly [11, 12, 13, 14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call