Abstract

Huge volcanic landslides are one of the most hazardous geomorphological processes that can occur during the evolution of volcanic ocean islands. The causes of these phenomena, however, are very complex and combine non-volcanic and volcanic factors. In the Canary Islands, more than 20 events have been detected during the last decades. A detailed analysis was carried out for La Orotava amphitheatre on Tenerife in order to understand the relationship between geomorphological and geological aspects and huge volcanic landslides. The results indicated four major features that play a significant role in such mass movements: deep erosive canyons, high coastal cliffs, widespread residual soils and structural axes. High coastal cliffs and deep erosive canyons locally reduce the stability conditions and control both the seaward and the lateral boundary of the landslide. Weak residual soils formed above phonolitic pyroclastic deposits occur repeatedly in the stratigraphic column of La Orotava and are characterised by their large extent. Thus, one of these soils may have evolved into the slip surface of the failure. Part of the head scarp of the amphitheatre is defined by a volcanic rift zone, as indicated by the measurement of dike orientation and a density map of eruptive vents. The four features are not able to trigger a failure, but to destabilise the volcano flank and determine the boundary of the slide. Therefore, information on depth and orientation of canyons; location and height of coastal cliffs; stratigraphic repetition, extension and thickness of residual soils and orientation and density of dikes and eruptive vents along structural axes should be incorporated into a hazard assessment on large landslides on volcanic islands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call