Abstract
Recent results from Chih-Scull show that the ×-homotopy relation on finite graphs can be expressed via a sequence of “spider moves” which shift a single vertex at a time. In this paper we study a “spider web graph” which encodes exactly these spider moves between graph homomorphisms. We show how composition of graph homomorphisms relate to the spider web, study the components of spider webs for bipartite and tree graphs, andfinish by giving an explicit description of the spider web for homomorphisms from a bipartite graph to a star graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.