Abstract

Given two graphs G and H, the mapping of f:V(G)→V(H) is called a graph homomorphism from G to H if it maps the adjacent vertices of G to the adjacent vertices of H. For the graph G, a subset of vertices is called a dissociation set of G if it induces a subgraph of G containing no paths of order three, i.e., a subgraph of a maximum degree, which is at most one. Graph homomorphisms and dissociation sets are two generalizations of the concept of independent sets. In this paper, by utilizing an entropy approach, we provide upper bounds on the number of graph homomorphisms from the bipartite graph G to the graph H and the number of dissociation sets in a bipartite graph G.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call