Abstract

We report sphingolipid-related reorganization of gel-like microdomains in the plasma membrane of living Saccharomyces cerevisiae using trans-Parinaric acid (t-PnA) and 1,6-diphenyl-1,3,5-hexatriene (DPH). Compared to control, the gel-like domains were significantly reduced in the membrane of a sphingolipid-deficient lcb1-100 mutant. The same reduction resulted from sphingolipid depletion by myriocin. The phenotype could be reverted when a myriocin-induced block in sphingolipid biosynthesis was bypassed by exogenous dihydrosphingosine. Lipid order of less-ordered membrane regions decreased with sphingolipid depletion as well, as documented by DPH fluorescence anisotropy. The data indicate that organization of lateral microdomains is an essential physiological role of these structural lipids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call