Abstract
Sphingolipids and their metabolites have been thought crucial for cell growth and cell cycle progression, membrane and protein trafficking, signal transduction, and formation of lipid rafts; however, recent studies in trypanosomes point to the dispensability of sphingolipids in some of these processes. In this study, we explore the requirements for de novo sphingolipid biosynthesis in the insect life cycle stage of the African trypanosome Trypanosoma brucei by inhibiting the enzyme serine palmitoyltransferase (SPT2) by using RNA interference or treatment with a potent SPT2 inhibitor myriocin. Mass spectrometry revealed that upon SPT2 inhibition, the parasites contained substantially reduced levels of inositolphosphorylceramide. Although phosphatidylcholine and cholesterol levels were increased to compensate for this loss, the cells were ultimately not viable. The most striking result of sphingolipid reduction in procyclic T. brucei was aberrant cytokinesis, characterized by incomplete cleavage-furrow formation, delayed kinetoplast segregation and emergence of cells with abnormal DNA content. Organelle replication continued despite sphingolipid depletion, indicating that sphingolipids act as second messengers regulating cellular proliferation and completion of cytokinesis. Distention of the mitochondrial membrane, formation of multilamellar structures within the mitochondrion and near the nucleus, accumulation of lipid bodies and, less commonly, disruption of the Golgi complex were observed after prolonged sphingolipid depletion. These findings suggest that some aspects of vesicular trafficking may be compromised. However, flagellar membrane targeting and the association of the flagellar membrane protein calflagin with detergent-resistant membranes were not affected, indicating that the vesicular trafficking defects were mild. Our studies indicate that sphingolipid biosynthesis is vital for cell cycle progression and cell survival, but not essential for the normal trafficking of flagellar membrane-associated proteins or lipid raft formation in procyclic T. brucei.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.