Abstract
In this work, we proposed what we believe to be a novel scanning solution for the assessment of high-NA samples, referred to as spherical-wave illumination scanning digital holographic profilometry (SWS-DHP). This approach introduces a 2F optimization methodology, based on the measurement of the focal length of the object to determine the spherical component of the scanning. Furthermore, re-optimization of 2F, whether it needs to be operated depends on the measured object's NA to inspect more information. Meanwhile, utilizing phase space analysis shows SWS superiority in information transfer for high-NA samples compared to plane-wave illumination scanning. In addition, this method introduces a shape reconstruction algorithm with volumetric aberration compensation based on the propagation of the aberrated object and illumination waves to obtain high-quality measurements. Finally, the imaging merits of SWS-DHP were proved through simulations and were experimentally verified for the object of NA up to 0.87.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.