Abstract
Radiation source localization is important for nuclear nonproliferation and can be obtained using time-encoded imaging systems with unsegmented detectors. A scintillation crystal can be used with a moving coded-aperture mask to vary the detected count rate produced from radiation sources in the far field. The modulation of observed counts over time can be used to reconstruct an image with the known coded-aperture mask pattern. Current time-encoded imaging systems incorporate cylindrical coded-aperture masks and have limits to their fully coded imaging field-of-view. This work focuses on expanding the field-of-view to 4π by using a novel spherical coded-aperture mask. A regular icosahedron is used to approximate a spherical mask. This icosahedron consists of 20 equilateral triangles; the faces of which are each subdivided into four equilateral triangle-shaped voxels which are then projected onto a spherical surface, creating an 80-voxel coded-aperture mask. These polygonal voxels can be made from high-Z materials for gamma-ray modulation and/or low-Z materials for neutron modulation. In this work, we present Monte Carlo N-Particle (MCNP) simulations and simple models programmed in Mathematica to explore image reconstruction capabilities of this 80-voxel coded-aperture mask.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.