Abstract

The aims of this work were clearly to assess the norms of radiation protection for building residents against natural radioactivity. This was done through measurement of natural radioactivity in building materials using gamma ray spectrometer. The annual effective dose (HR) linked to natural radioactivity was computed to estimate the radiation hazard in building materials. Obtained concentrations of these natural radionuclides and the calculated radiation hazard were compared with the national recommended values by natural limits by the Saudi standard code for radiation protection. The findings in this work of natural radioactivity levels were below the acceptable limits of 1 mSv/year which were found near the border of these limits. Therefore, it was found that the building materials may be safe to be used as construction materials. The annual effective doses were 0.8 ± 0.2 mSv/year for ceramics, 0.08 ± 0.02 mSv/year for adhesives, 0.6 ± 0.28 mSv/year for porcelains, 0.2 ± 0.1 mSv/year for marbles, 0.01 ± 0.01 mSv/year for paints, and 0.015 mSv/year for gypsum materials. The obtained results were compared with Monte Carlo N-Particle (MCNP) simulation. MCNP simulation was formulated to calculate the indoor gamma dose rate from the activity levels of the building materials which can take sample into very precise level. This computation was utilized to assess the uncertainty in the estimates. The results of MCNP were presented and an evaluation of the reported data shortly discussed. The radiation experimental values are in good agreement with the MCNP values, indicating that the obtained results are precise. Materials covered in the study are marbles, ceramics, adhesives, porcelain, paints, and locally produced cements. Key words: Radioactivity, building materials, gamma ray spectrometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call