Abstract
In two previous papers we presented an algorithm for coupling the Finite Volume (FV) method for the solution of 2D Navier–Stokes equations discretized on block structured Eulerian grids with the weakly-compressible Lagrangian Smoothed Particle Hydrodynamics (SPH) method. This coupling procedure exploits the SPH method to discretize flow regions close to free-surfaces and the Finite Volume approach to resolve both the bulk flow and the wall regions, where grid stretching can be favourably used. The information exchange between the two numerical schemes is established through overlapping zones. In the present paper this coupling paradigm is extended to a 3D framework. To this purpose, the extension of the algorithms for particle creation/deletion on the interfaces are described and issues related to free-surface intersection with each sub-domain boundary are addressed. Moreover, a new coupling procedure that simplifies the algorithm is proposed and tested. Effectiveness and accuracy achieved by the coupled solver are tested on challenging problems involving large free surface deformations and vorticity generation like the 3D flow past a cylinder below a free surface, the breaking wave generated by a ship bow in forward motion and the impact of a flat plate on the water surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.