Abstract
The process by which spermatid cytoplasmic volume is reduced and cytoplasm eliminated during spermiogenesis was investigated in the bullfrog Rana catesbeiana. At early phases of spermiogenesis, newly formed, rounded spermatids were found within spermatocysts. As acrosomal development, nuclear elongation, and chromatin condensation occurred, spermatid nuclei became eccentric within the cell. A cytoplasmic lobe formed from the caudal spermatid head and flagellum and extended toward the seminiferous tubule lumen. The cytoplasmic lobe underwent progressive condensation whereby most of its cytoplasm became extremely electron dense and contrasted sharply with numerous electron-translucent vesicles contained therein. At the completion of spermiogenesis, many spermatids with their highly condensed cytoplasm still attached were released from their Sertoli cell into the lumen of the seminiferous tubule. There was no evidence of the phagocytosis of residual bodies by Sertoli cells. Because spermatozoa are normally retained in the testis in winter and are not released until the following breeding season, sperm were induced to traverse the duct system with a single injection of hCG. Some spermatids remained attached to their cytoplasm during the sojourn through the testicular and kidney ducts; however, by the time the sperm reached the Wolffian duct, separation had occurred. The discarded cytoplasmic lobe (residual body) appeared to be degraded with the epithelium of the Wolffian duct. It was determined that the volume of the spermatid was reduced by 87% during spermiogenesis through a nuclear volume decrease of 76% and cytoplasmic volume decrease of 95.3%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have