Abstract

Sperm ultrastructure has been studied in three species of the taxa Mecoptera and Siphonaptera. The spermatozoon of the scorpion fly Panorpa germanica shows an apical bilayered acrosome, a helicoidal nucleus, a centriolar region and a 9+2 flagellar axoneme helicoidally arranged around a long mitochondrial derivative. A second mitochondrial derivative is very short and present only in the centriolar region. A single accessory body is present and it is clearly formed as a prolongation of the centriole adjunct material. Two lateral lamellae run parallel to the nucleus. The snow fly Boreus hyemalis has a conventional sperm structure and shows a bilayered acrosome, a long nucleus, a centriolar region, two mitochondrial derivatives and two accessory bodies. The axoneme is of the 9+2 type and is flattened at the tail tip. Both P. germanica and B. hyemalis have two longitudinal extra-axonemal rods and have a glycocalyx consisting of longitudinal parallel ridges or filaments. The spermatozoon of the flea Ctenocephalides canis has a long apical bilayered acrosome, a nucleus, a centriolar region, a 9+2 axoneme wound around two unequally sized mitochondrial derivatives, and two triangular accessory bodies. In the posterior tail end the flagellar axoneme disorganises and a few microtubular doublets run helicoidally around the remnant mitochondrial derivative. The glycocalyx consists of fine transverse striations. In all three species, the posterior tail tip is characterised by a dense matrix embedding the disorganised axoneme. From this comparative analysis of the sperm structure it is concluded that Mecoptera, as traditionally defined, is monophyletic and that B. hyemalis is a member of Mecoptera rather than of Siphonaptera.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call