Abstract
Abstract Female animals that use sperm from a single mating to fertilize eggs over an extended period require efficient mechanisms for sperm storage and use. There have been few studies of these mechanisms in tephritid flies. Mating, copula duration, sperm storage and sperm usage patterns are assessed in an Australian tephritid, the Queensland fruit fly (Bactrocera tryoni; a.k.a. ‘Q‐fly’). In particular, the present study investigates whether each of these aspects of mating varies in relation to female size or male size, whether sperm storage patterns change over time after mating (1, 5, 10 and 15 days), and the relative roles of the ventral receptacle and the two spermathecae as sperm storage organs. Large females are more likely to mate than are small females, and are also more fecund in the first 5 days after mating. Females are more likely to store some sperm and, among those that store some sperm, store more sperm if their mate is large. Most sperm are stored in the spermathecae (median = 97%), often with high levels of asymmetry between the two spermathecae. Asymmetry of sperm storage is related to number of sperm stored, but not to male or female size. Total number of stored sperm declines over the 15 days after mating, but this decrease in sperm numbers only reflects changes in the spermathecae; numbers of sperm in the ventral receptacle remain unchanged over this period. As a consequence, the proportion of total sperm stored in the spermathecae declines relative to the ventral receptacle. These results are consistent with a system in which small numbers of sperm are maintained in the ventral receptacle for fertilizations, and are replenished by sperm from the spermathecae as required. Sperm distribution and usage patterns in Q‐flies are comparable with recent findings in medflies, Ceratitis capitata, but differ markedly from patterns found in several Anastrepha species.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have