Abstract

Sperm cryopreservation in goats has been a challenge for many years due to the detrimental effects of seminal plasma enzymes produced by the bulbo-urethral glands which catalyse the hydrolysis of lecithins in egg yolk to fatty acids and lysolecithins which are deleterious to spermatozoa. This fact implies to carry out additional processing steps during sperm cryopreservation for seminal plasma removal triggering different sperm responses which may affect sperm functionality. The objective of the present study was to determine specific sperm subpopulation responses in different handling steps during the cryopreservation process by using functional sperm kinematic descriptors in caprine ejaculates. Buck ejaculates (n = 40) were analysed for sperm concentration, viability, morphology and acrosome integrity. Moreover, sperm motility was assessed using a computer-assisted sperm analysis (CASA) system after five different handling steps (fresh sperm, 1st washing, 2nd washing, cooling and frozen-thawed sperm) during a standard cryopreservation protocol for goat semen. The results were analysed using Principal Component Analysis (PCA) and multivariate clustering procedures to establish the relationship between the distribution of the subpopulations found and the functional sperm motility in each step. Except for the 1st and 4th steps, four sperm kinematic subpopulations were observed explaining more than 75% of the variance. Based on velocity and linearity parameters and the subpopulations disclosed, the kinematic response varies among processing steps modifying sperm movement trajectories in a subpopulation-specific and handling step-dependent manner (p < 0.001). The predominant motile subpopulation in freshly ejaculated buck sperm had very fast velocity characteristics and a non-linear trajectory (41.1%). Washing buck sperm twice altered the subpopulation structure as well as cooling which resulted in a dramatic reduction in sperm velocities (p < 0.01). Frozen-thawed spermatozoa showed similar characteristics to cooled sperm except there was a further increase in linearity with a large proportion of sperm attributed to new slow, linear cluster (32.5%). In conclusion, this study confirms the variability and heterogeneity of goat sperm kinematic patterns throughout the cryopreservation process and suggests that the predominant motility pattern (assayed in vitro via CASA) of high quality spermatozoa might be typified by high speed and a non-linear trajectory. The relationships among the number and distribution of sperm subpopulations and the different handling steps were particularlly relevant, specially after the cooling and the post-thawing steps, when effects derived from these critical handling steps were evident and altered drastically the sperm motion patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.