Abstract

The RADTRAN model for calculating radiation doses is based on the well understood behaviour of ionising radiation. Absorption of ionising radiation depends on the energy and type of radiation and on the absorbing material. The casks that are used to transport spent nuclear fuel have walls that absorb most of the emitted ionising radiation and thereby shield the public and the workers. For routine transportation, RADTRAN models the cask as a sphere and assumes that the longest dimension of the trailer or railcar carrying the cask is the same as that of the cask. The dose rate in Sv/h at one metre from the cask is modelled as a virtual source at the centre of a sphere whose diameter is the longest dimension of the actual spent fuel cask. People who live along the cask’s route and the people in vehicles that share the route are exposed to external radiation from the cask. The dose to workers and the public from a cask during routine transportation depends on the time that the workers or public are exposed to...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.