Abstract

We show an increase of the sedimentation velocity as small particles are confined in circular capillaries. In general, confinement slows down sedimentation. But, we show that at low Reynolds numbers and in 1D confinement this is not the case. Particle sedimentation velocity is not homogeneous, which can lead to the formation of structures. These structures are enhanced and stabilized in the presence of walls and in the absence of other dissipative mechanisms. As a consequence, it is possible to achieve sedimentation velocities that even exceed the Stokes velocity. The segregation at critical capillary diameters has been directly observed using a large scale model. These simple experiments offer a new insight into the old problem of sedimentation under confinement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.