Abstract
Autotuning technology has emerged recently as a systematic process for evaluating alternative implementations of a computation, in order to select the best-performing solution for a particular architecture. Specialization optimizes code customized to a particular class of input data set. In this paper, we demonstrate how compiler-based autotuning that incorporates specialization for expected data set sizes of key computations can be used to speed up Nek5000, a spectral-element code. Nek5000 makes heavy use of what are effectively Basic Linear Algebra Subroutine (BLAS) calls, but for very small matrices. Through autotuning and specialization, we can achieve significant performance gains over hand-tuned libraries (e.g., Goto, ATLAS, and ACML BLAS). Additional performance gains are obtained from using higher-level compiler optimizations that aggregate multiple BLAS calls. We demonstrate more than 2.2X performance gains on an Opteron over the original manually tuned implementation, and speedups of up to 1.26X on the entire application running on 256 nodes of the Cray XT5 Jaguar system at Oak Ridge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.