Abstract

A new block algorithm for computing a full rank solution of the Sylvester-observer equation arising in state estimation is proposed. The major computational kernels of this algorithm are: 1) solutions of standard Sylvester equations, in each case of which one of the matrices is of much smaller order than that of the system matrix and (furthermore, this small matrix can be chosen arbitrarily), and 2) orthogonal reduction of small order matrices. There are numerically stable algorithms for performing these tasks including the Krylov-subspace methods for solving large and sparse Sylvester equations. The proposed algorithm is also rich in Level 3 Basic Linear Algebra Subroutine (BLAS-3) computations and is thus suitable for high performance computing. Furthermore, the results on numerical experiments on some benchmark examples show that the algorithm has better accuracy than that of some of the existing block algorithms for this problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.