Abstract

All of the theoretical speed scaling research to date has assumed that the power function, which expresses the power consumption P as a function of the processor speed s, is of the form P = sα, where α > 1 is some constant. Motivated in part by technological advances, we initiate a study of speed scaling with arbitrary power functions. We consider the problem of minimizing the total flow plus energy. Our main result is a (3+∊)-competitive algorithm for this problem, that holds for essentially any power function. We also give a (2 + ∊)-competitive algorithm for the objective of fractional weighted flow plus energy. Even for power functions of the form sα, it was not previously known how to obtain competitiveness independent of α for these problems. We also introduce a model of allowable speeds that generalizes all known models in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.