Abstract

Speech separation is still a challenging issue in acoustic signal processing. To deal with this problem, sparse methods are usually employed when there are more sources than sensors (underdetermined problem). In this paper, a two-microphone separation method is presented. The proposed algorithm is based on grouping time-frequency points with similar direction-of-arrival (DOA) using a multi-level thresholding approach. The thresholds are calculated via the maximization of the interclass variance between DOA estimates and allow to identify angular sections wherein the speakers are located with a strong likelihood. Separation is finally performed by means of time-frequency masks. Several experiments conducted under different mixing scenarios are discussed, showing the benefits of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.