Abstract

Tracking moving wideband sound sources is one of the most challenging issues in the acoustic array signal processing which is based on the direction of arrival (DOA) estimation. Compressive sensing (CS) is a recent theory exploring the signal sparsity representation, which has been proved to be superior for the DOA estimation. However, the spatial aliasing and the offset at endfire are the main obstacles for CS applied in the wideband DOA estimation. We propose a particle filter based compressive sensing method for tracking moving wideband sound sources. First, the initial DOA estimates are obtained by wideband CS algorithms. Then, the real sources are approximated by a set of particles with different weights assigned. The kernel density estimator is used as the likelihood function of particle filter. We present the results for both uniform and random linear array. Simulation results show that the spatial aliasing is disappeared and the offset at endfire is reduced. We show that the proposed method can achieve satisfactory tracking performance regardless of using uniform or random linear array.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.