Abstract
We present a cloud-based multimodal dialogue platform for the remote assessment and monitoring of speech, facial and fine motor function in Parkinson's Disease (PD) at scale, along with a preliminary investigation of the efficacy of the various metrics automatically extracted by the platform. 22 healthy controls and 38 people with Parkinson's Disease (pPD) were instructed to complete four interactive sessions, spaced a week apart, on the platform. Each session involved a battery of tasks designed to elicit speech, facial movements and finger movements. We find that speech, facial kinematic and finger movement dexterity metrics show statistically significant differences between controls and pPD. We further investigate the sensitivity, specificity, reliability and generalisability of these metrics. Our results offer encouraging evidence for the utility of automatically-extracted audiovisual analytics in remote mon-itoring of PD and other movement disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.