Abstract

Little attention has been paid so far in the context in which databases used for the study of emotion through vocal channel are recorded. Thus, we propose and evaluate an emotion classification system focusing on the differences between acted and spontaneous emotional speech through the use of two different databases: SAVEE and IEMOCAP. For the purpose of this work, we have examined wavelet packet energy and entropy features applied to Mel, Bark and ERB scale applied with Hidden Markov Model (HMM) as classification system. Experimental results show that the proposed method is a feasible technique for emotion classification for both acted and spontaneous context, pointing out the performance difference of the system between the two contexts. The experimental results shows that ERB scale features gives better performance in comparison with other studied features with recognition accuracy of 78.75% for acted context and 50.06% for spontaneous context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.