Abstract
The authors present a speech-compression scheme based on a three-layer perceptron in which the number of units in the hidden layer is reduced. Input and output layers have the same number of units in order to achieve identity mapping. Speech coding is realized by scalar or vector quantization of hidden-layer outputs. By analyzing the weighting coefficients, it can be shown that speech coding based on a three-layer neural network is speaker-independent. Transform coding is automatically based on back propagation. The relation between compression ratio and SNR (signal-to-noise ratio) is investigated. The bit allocation and optimum number of hidden-layer units necessary to realize a specific bit rate are given. According to the analysis of weighting coefficients, speech coding based on a neural network is transform coding similar to Karhunen-Loeve transformation. The characteristics of a five-layer neural network are examined. It is shown that since the five-layer neural network can realize nonlinear mapping, it is more effective than the three-layer network. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.