Abstract
Hotspots and hotspot tracks are on, or start on, preexisting lithospheric features such as fracture zones, transform faults, continental sutures, ridges and former plate boundaries. Volcanism is often associated with these features and with regions of lithospheric extension, thinning, and preexisting thin spots. The lithosphere clearly controls the location of volcanism. The nature of the volcanism and the presence of ‘melting anomalies’ or ‘hotspots’, however, reflect the intrinsic chemical and lithologic heterogeneity of the upper mantle. Melting anomalies—shallow regions of ridges, volcanic chains, flood basalts, radial dike swarms—and continental breakup are frequently attributed to the impingement of deep mantle thermal plumes on the base of the lithosphere. The heat required for volcanism in the plume hypothesis is from the core. Alternatively, mantle fertility and melting point, ponding and focusing, and edge effects, i.e., plate tectonic and near-surface phenomena, may control the volumes and rates of magmatism. The heat required is from the mantle, mainly from internal heating and conduction into recycled fragments. The magnitude of magmatism appears to reflect the fertility, not the absolute temperature, of the asthenosphere. I attribute the chemical heterogeneity of the upper mantle to subduction of young plates, aseismic ridges and seamount chains, and to delamination of the lower continental crust. These heterogeneities eventually warm up past the melting point of eclogite and become buoyant low-velocity diapirs that undergo further adiabatic decompression melting as they encounter thin or spreading regions of the lithosphere. The heat required for the melting of cold subducted and delaminated material is extracted from the essentially infinite heat reservoir of the mantle, not the core. Melting in the upper mantle does not requires the instability of a deep thermal boundary layer or high absolute temperatures. Melts from recycled oceanic crust, and seamounts—and possibly even plateaus—pond beneath the lithosphere, particularly beneath basins and suture zones, with locally thin, weak or young lithosphere. The characteristic scale lengths—150 to 600 km—of variations in bathymetry and magma chemistry, and the variable productivity of volcanic chains, may reflect compositional heterogeneity of the asthenosphere, not the scales of mantle convection or the spacing of hot plumes. High-frequency seismic waves, scattering, coda studies and deep reflection profiles are needed to detect the kind of chemical heterogeneity and small-scale layering predicted from the recycling hypothesis.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have