Abstract
Objective.To examine the mechanisms underlying the activation of the sympathetic nervous system and blood pressure elevation in vasorenal hypertension in the male Wistar rats weighing 250–300 g.Design and methods.We observed the development of renovascular hypertension, beat-to-beat interval and heart rate variability in animals with intact renal nerves and denervated ischemic kidney for 8 weeks after renal artery clamping. Eight weeks later after renal artery clamping in hypertensive rats with denervated ischemic kidney, both-sided renal denervation was performed, and blood pressure was monitored for 6 weeks.Results.Although the ischemic kidney denervation reduces the activity of the sympathetic nervous system, it does not prevent renovascular hypertension development. However, both-sided renal denervation leads to the normalization of blood pressure in the rats with stable renovascular hypertension.Conclusion.We suggest that increased afferent fl ow from structural formations of the ischemic kidney plays an important role for the increased sympathetic nervous system activity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have